Abstract

Short-range structure and formation of amorphous aggregates of iron inositol hexaphosphate (iron phytate) were studied by broadline solid-state 31P NMR and Fe X-ray absorption spectroscopy. It was shown that bonds P-O-Fe with strong covalent character exist in solid substances. Iron in these substances is octahedrally coordinated by six oxygen atoms and further monodentatly bonded to three or four phosphorus atoms. In this way, iron generates -P-O-Fe-O-P- intermolecular connections. An insight into the formation of the network was obtained by studying structural changes in iron phytates with increasing concentrations of iron. It was shown that the solid network builds when at least four out of six phosphate groups per one phytic molecule bond to iron atoms and thus participate in the intermolecular connections. This leads to iron phytate with approximately two iron atoms per one molecule of phytate. When the concentration of iron in aggregates increases, the number of P-O-Fe bonds, and thus the number of phosphate groups that are bonded to iron, increases. Solid iron phytate with approximately four iron atoms per one molecule of phytate is almost saturated with iron. Its short-range structural properties can be explained well by a structure that is approaching an idealized model, in which each phosphate group is bonded to two iron atoms and each iron atom is bonded to three phosphorus atoms and is shared between two phytic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.