Abstract

Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn2+) pressures were comparatively analyzed. The presence of ZnO NPs and Zn2+ promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn2+ mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn2+ pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn2+ pressures supported the enrichment of ARGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call