Abstract

A series of MnO2-Co3O4-CeO2 catalysts with different ceria loading (0.75, 1.26 and 1.88 Ce/Mn molar ratio) were synthesized by a co-precipitation technique and the catalytic activity was tested for selective catalytic reduction of NOx by C3H6 or NH3. The catalysts were characterized by various physicochemical techniques to examine the effect of ceria loading on the properties of catalysts, such as crystallinity of metal species, surface area, porosity, and acidity using physical adsorption analysis, SEM-EDX, H2-TPR, XRD, NH3-TPD and in-situ FTIR spectroscopy. Ceria loading had a significant effect on the reduction of NOx, with the catalyst having low amount of ceria loading (Ce/Mn = 0.75) showing excellent performance at low-temperature conditions, but the activity declined at higher temperature. The high ceria loading (Ce/Mn = 1.88) catalyst showed poor activity compared to the counterparts owing to the lower number of acid sites and the resulting lower adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.