Abstract

Direct ethanol fuel cells (DEFCs), which have been widely recognized as nontoxic and green energy conversion devices, show attractive application prospects for liquid hydrogen-carriers, due to the higher specific energy and lower toxicity of ethanol. Pt-based catalysts are widely used in DEFCs, while their poor poisoning resistance highlights the importance of composition and structure optimization. Herein, we synthesized a series of reduced graphene oxide supported ternary alloy AuxPt1-xCu3/rGO (x = 0-1) catalysts with excellent ethanol oxidation performance and a composition-dependent volcano plot trend of the ordering degree was observed and rationalized. The highest Pt-normalized mass activity of Au0.8Pt0.2Cu3/rGO is attributed to the optimized CO binding energy according to DFT calculations. This work not only provides an efficient EOR catalyst based on ordered alloys AuxPt1-xCu3 (x = 0-1), but also offers valuable insight into the role of a third metal in tuning the structure and function of alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.