Abstract

Instead of using finite petroleum-based resources and harmful additives, starch can be used as a biodegradable, low-cost, and non-toxic ingredient for green adhesives. This work employs K3PO4 catalyzed transesterifications of cassava starch and methyl laurate at varying reaction times (1-10 h), resulting in the enhanced hydrophobicity of starch laurates. At longer reaction times, starch laurates having higher degrees of substitution (DS) were obtained. While starch laurates are the major products of transesterification, relatively low-molecular-weight byproducts (1%) were detected and could be hydrolyzed starches based on gel permeation chromatography results. Contact angle measurements confirmed the relatively high hydrophobicity of the modified starches compared with that of native starch. The modified starches were then employed to prepare water-based adhesives on paper (without any additional additives). Notably, the shear strength of the esterified starch adhesives appears to be independent of the DS of esterified samples, hence the transesterification reaction times. Additionally, the shear strength of water-based adhesives (0.67-0.73 MPa) for bonding to paper substrates is superior to that of two other commercially available glues by a factor of 10 to 80 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.