Abstract
Aromatic polyketides are biologically active natural products. Many important pharmaceuticals are derived from aromatic polyketides. Especially important in aromatic polyketide biosynthesis is the regiospecific cyclization of a linear, preassembled polyketide chain catalyzed by aromatase/cyclase (ARO/CYC), which serves as a key control point in aromatic ring formation. How different ARO/CYCs promote different cyclization patterns is not well understood. The whiE locus of Streptomyces coelicolor A3(2) is responsible for the biosynthesis of an aromatic polyketide precursor to the gray spore pigment. The WhiE ARO/CYC catalyzes the regiospecific C9-C14 and C7-C16 cyclization and aromatization of a 24-carbon polyketide chain. WhiE ARO/CYC shares a high degree of similarity to another nonreducing PKS ARO/CYC, TcmN ARO/CYC. This paper presents the apo crystal structure of WhiE ARO/CYC, and cocrystal structures of WhiE and TcmN ARO/CYCs bound with polycyclic aromatic compounds that mimic the respective ARO/CYC products. Site-directed mutagenesis coupled with in vitro PKS reconstitution assays was used to characterize the interior pocket residues of WhiE ARO/CYC. The results confirmed that the interior pocket of ARO/CYCs is a critical determinant of polyketide cyclization specificity. A unified ARO/CYC-mediated cyclization mechanism is proposed on the basis of these structural and functional results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.