Abstract

We present data that suggest that jet fuel smoke point and the formation of thermal oxidative deposit are linked by formation of a common intermediate, high molecular weight soluble macromolecular oxidatively reactive species (SMORS). Hardy and Wechter (Energy Fuels 1994, 8, 782−787) have previously observed that with diesel fuels containing unhydrotreated light cycle oil (LCO), the highest molecular weight fraction of SMORS can be conveniently quantified as an extraction-induced precipitate (EIP). These authors have also shown that for fresh diesel fuel, oxidatively stressed fuel EIP mass correlates well with results of accelerated storage stability determined by ASTM 5304. Consistent with this, data are presented that suggest EIP mass, from jet fuels oxidatively stressed in tubing bombs, correlates with mean thermal oxidative deposition in a flowing reactor. In addition, data are presented that suggest that for a polar compound doped oxidatively stressed jet fuel, EIP mass correlates with the total conc...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.