Abstract

The union of experimental and computational methods can accelerate the development of polymerization catalysts for industrial applications. Herein, we report complementary experimental and computational studies of the thermal stability of α-diimine nickel complexes by using thermally stable Cat. 1 and a typical Brookhart catalyst (B-Cat) as models. Experimentally, we found that many more nickel atoms could be activated for Cat. 1 at elevated temperature during the ethylene polymerization process compared to those for B-Cat. Computationally, first-principle calculations showed that the decomposition energies of Cat. 1 were found to be higher than those of B-Cat, contributing to the activation observed for Cat. 1. We found that the presence of ethydene evidently affected the conformation of C1–N1–Ni–N2–C2 five-membered ring (where the nickel center is located) of Cat. 1, turning the envelope conformation (B-Cat) into a half-chair conformation (Cat. 1). According to calculations, the decomposition energy of ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.