Abstract

A crucial mechanism for the application of biochar in soil improvement is the direct release of nutrients from biochar. Low molecular weight organic acids (LMWOAs) ubiquitously exist in soil. However, the mechanism of LMWOAs-mediated release of nutrients from biochars remains little known. Ten biochars with different mineral element stoichiometric ratio were produced, and four LMWOAs [acetic (HAc), glycolic (GA), tartaric (TA), and citric acids (CA)] were employed, to enunciate the influence mechanism of LMWOAs on the release of phosphorus and potassium from biochar. The results showed that HAc suppressed the release of P from biochars, while TA and CA facilitated the release of P from biochars with high ratios of polyvalent metals to P. A new mechanism was proposed that the deprotonated HAc combined with the dissolved HPO42− or H2PO4− to form a complex through hydrogen bond and cation bridging. The hydrophobic methyl group of HAc was exposed outside of the complex, which decreased the water-solubility of phosphate. Meanwhile, a high ratio of polyvalent metals to P benefited more P to combine with polyvalent metals, which decreased the water-solubility of P, but the deprotonated TA and CA are polyvalent anions that could substitute this part of P by anion exchange. Also, LMWOAs promoted the release of K from biochars with low K/(P + S) ratios, possibly due to unionized carboxyl of LMWOAs served as a hydrogen bond donor to displace K out of biochars. This study gives a deep understanding of the fate of biochar originated nutrients response to LMWOAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call