Abstract
Indium is widely used in the technology industry and is an emerging form of environmental pollution. The presence of indium in soil and groundwater inhibits shoot and root growth in crops, thus reducing yields. However, the underlying mechanisms are unknown, making it difficult to design effective countermeasures. We explored the spatiotemporal effects of excess indium on the morphological, physiological and biochemical properties of rice (Oryza sativa L.). Indium accumulated mainly in the roots, severely restricting their growth and causing the acute perturbation of phosphorus, magnesium and iron homeostasis. Other effects included leaf necrosis and anatomical changes in the roots (thinned sclerenchyma and enlarged epidermal and exodermal layers). Whole-transcriptome sequencing revealed that rice immediately responded to indium stress by activating genes involved in heavy metal tolerance and phosphate starvation responses, including the expression of genes encoding phosphate-regulated transcription factors and transporters in the roots. Direct indium toxicity rather than phosphate deficiency was identified as the major factor affecting the growth of rice plants, resulting in the profound phenotypic changes we observed. The application of exogenous phosphate alleviated indium toxicity by reducing indium uptake. Our results suggest that indium immobilization could be used to prevent indium toxicity in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.