Abstract

Anaerobic ammonium oxidation coupled to iron (Ⅲ) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via the Feammox process in riparian zones. In this study, evidence of Feammox in the riparian zone soil layers (0-20 cm) was demonstrated using the isotope tracing technique and a high-throughput sequencing technology. The results showed that Feammox occurred in the riparian zones in four different soil layers (A:0-5 cm, B:5-10 cm, C:10-15 cm, D:15-20 cm) and the Feammox rates ranged from 0.25 mg·(kg·d)-1 to 0.29 mg·(kg·d)-1. In the B soil sample, the Feammox rate was significantly higher than in the other soil samples (P<0.05). In addition, iron reducing bacteria played an essential role in the Feammox process, and Anaeromyxobacter and Geobacter were detected in all the soil samples. In the B soil sample, the abundance of iron reducing bacteria was significantly higher than in the other soil samples (P<0.05). Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.