Abstract

The Taxus canadensis phenylalanine aminomutase (TcPAM) catalyze the isomerization of (S)-α-phenylalanine to the (R)-β-isomer. The active site of TcPAM contains the signature 5-methylene-3,5-dihydroimidazol-4-one (MIO) prosthesis, observed in the ammonia lyase class of enzymes. Up to now, there are two plausible mechanisms for these MIO-dependent enzymes, i.e., the amino-MIO adduct mechanism and the Friedel–Crafts-type reaction mechanism. In response to this mechanistic uncertainty, the phenylalanine aminomutase mechanism was investigated by using density functional methods. The calculation results indicate that: (1) the reaction prefers the amino-MIO adduct mechanism where the 2,3-amine shift process contains six elementary steps; (2) the ammonia elimination step proceeds through an E2 mechanism; (3) a single C1Cα bond rotation of 180° in the cinnamate skeleton occurs in the active site prior to the rebinding of NH2 group to the cinnamate. This can be used to explain the stereochemistry of the TcPAM reaction product which is contrary to those of the PaPAM and SgTAM enzymes. Based on these calculations, the roles of important residues in the active site were also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.