Abstract

The dual-site catalysts consisting of two adjacent single-atom sites on graphene have exhibited promising catalytic activity of the electrochemical oxygen/hydrogen evolution reaction (OER/HER). However, the electrochemical mechanisms of the OER/HER on dual-site catalysts have still been ambiguous. In this work, we employed density functional theory calculations to study the catalytic activity of the OER/HER with a O-O (H-H) direct coupling mechanism on dual-site catalysts. Specifically, these element steps should be classified into two categories: a step evolving proton-coupled electron transfer (PCET step) that needs to be driven by electrode potential and a step without PCET (non-PCET step) that occurs naturally under mild conditions. Our calculated results show that both the maximal free energy change (ΔGMax) contributed by the PCET step and the activity barrier (Ea) of the non-PCET step must be examined to evaluate the catalytic activity of the OER/HER on the dual site. Importantly, it is a basically inevitable negative relationship between ΔGMax and Ea, which would play a critical role in guiding the rational design of effective dual-site catalysts for electrochemical reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.