Abstract

The successful discovery of borophene has opened a new door for the development of 2D materials. Due to its excellent chemical, electronic and thermal properties, borophene has shown considerable potential in supercapacitors, hydrogen storage and batteries. In this paper, the thermodynamic characteristics and magnetocaloric effect of borophene are specifically studied using the Monte Carlo method. We find that there is an opposite impact between the spin quantum number and the crystal field on the magnetization, magnetic susceptibility, specific heat and magnetic entropy of the system. Moreover, increasing the spin quantum number or decreasing the absolute value of the crystal field can improve the relative cooling power, the coercivity (h c), and the remanence (M R) and the area of the loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.