Abstract
The initial transition of amyloid beta (1-42) (Abeta42) soluble monomers/small oligomers from unordered/alpha-helix to a beta-sheet-rich conformation represents a suitable target to design new potent inhibitors and to obtain effective therapeutics for Alzheimer's disease. Under optimized conditions, this reliable and reproducible CD kinetic study showed a three-step sigmoid profile that was characterized by a lag phase (prevailing unordered/alpha-helix conformation), an exponential growth phase (increasing beta-sheet secondary structure) and a plateau phase (prevailing beta-sheet secondary structure). This kinetic analysis brought insight into the inhibitors' mechanism of action. In fact, an increase in the duration of the lag phase can be related to the formation of an inhibitor-Abeta complex, in which the non-amyloidogenic conformation is stabilized. When the exponential rate is affected exclusively, such as in the case of Congo red and tetracycline, then the inhibitor affinity might be higher for the pleated beta-sheet structure. Finally, by adding the inhibitor at the end of the exponential phase, the soluble protofibrils can be disrupted and the Abeta amyloidogenic structure can revert into monomers/small oligomers. Congo red and tetracycline preferentially bind to amyloid in the beta-sheet conformation because both decreased the slope of the exponential growth, even if to a different extent, whereas no effect was observed for tacrine and galantamine. Some very preliminary indications can be derived about the structural requirements for binding to nonamyloidogenic or beta-sheet amyloid secondary structure for the development of potent antiaggregating agents. On these premises, memoquin, a multifunctional molecule that was designed to become a drug candidate for the treatment of Alzheimer's disease, was investigated under the reported circular dichroism assay and its anti-amyloidogenic mechanism of action was elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.