Abstract

Fatty acid binding proteins (FABPs), are evolutionarily conserved small cytoplasmic proteins that occur in many tissue-specific types. One of their primary functions is to facilitate the clearance of the cytoplasmic matrix from free fatty acids and of other detergent-like compounds. Crystallographic studies of FABP proteins have revealed a well defined binding site located deep inside their beta-clam structure that is hardly exposed to the bulk solution. However, NMR measurements revealed that, when the protein is equilibrated with its ligands, residues that are clearly located on the outer surface of the protein do interact with the ligand. To clarify this apparent contradiction we applied molecular dynamics simulations to follow the initial steps associated with the FABP-fatty acid interaction using, as a model, the interaction of toad liver basic FABP, or chicken liver bile acid binding protein, with a physiological concentration of palmitate ions. The simulations (approximately 200 ns of accumulated time) show that fatty acid molecules interact, unevenly, with various loci on the protein surface, with the favored regions being the portal and the anti-portal domains. Random encounters with palmitate at these regions led to lasting adsorption to the surface, while encounters at the outer surface of the beta-clam were transient. Therefore, we suggest that the protein surface is capable of sequestering free fatty acids from solution, where brief encounters evolve into adsorbed states, which later mature by migration of the ligand into a more specific binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.