Abstract

AbstractOne of the remaining challenges for lithium–sulfur batteries toward practical application is early cathode passivation by the insulating discharge product: Li2S. To understand how to best mitigate passivation and minimize related performance loss, a kinetic Monte–Carlo model for Li2S crystal growth from solution is developed. The key mechanisms behind the strongly different natures of Li2S layer growth, structure, and morphology for salts with different (DN) are revealed. LiTFSI electrolyte in dimethyl ether leads to lateral Li2S growth on carbon and fast passivation because it increases the Li2S precipitation‐to‐dissolution probability on carbon relative to Li2S. In contrast, LiBr electrolyte has a higher DN and yields a particle‐like structure due to a significantly higher precipitation‐to‐dissolution probability on Li2S compared to carbon. The resulting large number of Li2S sites further favors particle growth, leading to low passivation. This study is able to identify the key parameters of the electrolyte and substrate material to tune Li2S morphology and growth to pave the way for optimized performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.