Abstract

meso-Diaminopimelate dehydrogenase ( meso-DAPDH) is a good candidate for one-step synthesis of d-amino acid from 2-keto acids. Our previous research revealed the classification of meso-DAPDH family and showed that type II meso-DAPDH, such as the meso-DAPDH from Symbiobacterium thermophilum (StDAPDH), could catalyze reductive amination. In this article, seven residues of StDAPDH, which are highly conserved in each subfamily but are different between two subfamilies, were targeted to explore the relationships between structure and function. Determination of kinetic parameters showed that the amino acid residues, including P69, K159, V68, S90, V14, and V156, played very important roles in the catalytic function of StDAPDH. Molecular dynamics simulation revealed that these point mutations reduced the productive conformations by the newly formed or eliminated interactions between the residues and ligands. These results strengthen our understanding of the catalytic mechanism and evolution of meso-DAPDH and can aid future endeavors in enzyme engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.