Abstract

Leg stiffness plays a key role in the storage and release of elastic energy during stance. However, the extent to which a runner is able to reuse stored energy remains a limiting factor in determining their running effectiveness. In this study, ten habitual rearfoot strikers and ten habitual forefoot strikers were asked to run on a treadmill in three footwear conditions: traditional, neutral, and minimal running shoes. We examined the effect of habitual foot strike pattern and footwear on leg stiffness control within three task-relevant phases of stance (i.e. touch-down, loading, unloading). Control was quantified using stride-to-stride leg stiffness time-series and the coefficient of variability and detrended fluctuation analysis (DFA). The results are interpreted within a theoretical framework that blends dynamic systems theory and optimal feedback control. Results indicate that leg stiffness control is tightly regulated by an active control process during the loading period of stance. In contrast, the touch-down and unloading phases are driven mostly by passive allometric control mechanisms. The effect of footwear on leg stiffness control was inconclusive due to inconsistent trends across three shoe types. However, stiffness control was affected by landing technique. Habitual rearfoot strike runners have reduced DFA values during the touch-down and unloading phases. These sub-phases are associated with an allometric control process and suggests that rearfoot strike runners express a reduction in system complexity for leg stiffness control and hence, a less adaptable system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.