Abstract

This study aims to extract and characterize cellulose nanocrystals (CNCs) from date pits (DP), an agricultural solid waste. Two methods were used and optimized for the cellulose nanocrystals (CNCs) extraction, namely the mechanical stirrer method (CNCs 1 ) and the Soxhlet apparatus method (CNCs 2 ) in terms of chemical used, cost, and energy consumption. The results showed that scanning electron microscopy revealed the difference in the morphology as they exhibit rough surfaces with irregular morphologies due to the strong chemical treatments during the delignification and bleaching process. Moreover, transmission electron microscopy analysis for CNCs reveals the true modification that was made through sulfuric acid hydrolysis as it presents cellulose microfibrils with a packed structure. Fourier transform infrared proved that the CNCs were successfully extracted using the two methods since most of the lignin and hemicellulose components were removed. The crystallinity index of CNCs 1 and CNCs 2 was 69.99%, and 67.79%, respectively, and both presented a high yield of CNCs (≥10%). Ultimately, both techniques were successful at extracting CNCs. Based on their cost-effectiveness and time consumption, it was concluded that method 1 was less expensive than method 2 based on the breakdown of the cost of each step for CNCs production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call