Abstract

The demand for increasingly fine detail in optical lithography for semiconductors necessitates the use of lower-wavelength lithographic light. This drives the need for lenses in optical lithography steppers made of vacuum ultraviolet-transparent (VUV-transparent) materials. In this work, the density functional theory (DFT) study of potassium magnesium fluoride KMgF3 is presented. Total energy was calculated with correlation functional generalized gradient approximation (GGA). The ground state quantities such as bulk modulus and lattice parameters have been evaluated. The material's cubic structure is scrutinized under various stress levels (0–100 GPa), revealing that KMgF3 starts to deform at 128 GPa. The C11, C12, and C44 independent elastic constants were used to analyze the structural stability of the KMgF3. The densities of states and electronic band structures have also been computed. According to electronic calculations, when stress is applied to KMgF3, the band gap increases for all values of stress (0–100 GPa). Mechanical parameters, including elastic constants and ratios, indicate the material's remarkable ductility and stability. Phonon density of states and thermal characteristics exhibit shifts and variations with increasing stress, providing insights into the material's behaviour below its melting point. The thermodynamic properties of KMgF3, such as enthalpy, free energy, entropy, heat capacity, and Debye temperatures at various temperatures ranging from 0 K to 1000 K, have also been examined to explore their basic properties. These findings contribute to a comprehensive understanding of KMgF3, opening avenues for its application in advanced technologies, particularly in the realms of semiconductors and optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.