Abstract

This study investigated the effects of drying methods (hot air drying (HAD), microwave vacuum drying (MVD), and vacuum freeze drying (VFD)) on the rehydration performance (RP) of dried Lanzhou lily scales (LLS). Rehydration rate and water migration showed that MVD had the best RP, followed by VFD, while HAD had the worst. The results of additional morphology observation using scanning electron microscopy (SEM) and micro X-ray computed tomography (CT) imaging showed that both MVD and VFD created more channels in more porous structures, which facilitated their better RP than that by HAD. The results also revealed the spatial structure diversity (including pores, channels size, and internal network) of each dried Lanzhou lily scale group. In addition, studies analyzed how drying techniques affected the physiochemical properties of lily starch, including its water solubility, pasting profiles, and starch particle morphology. The findings indicated that when MVD was in operation, partial gelatinization in lily starch was brought about by thermal effects, allowing MVDS crystals to change from B-type to V-type and causing MVDS to have better water absorption ability. Consequently, despite the fact that MVD's desiccated lilies have a lower porous structure and thinner channels than VFD's, MVD has a higher RP than VFD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.