Abstract

CO oxidative coupling to dimethyl oxalate (DMO) on Pd(100), (110) and (211) surfaces have been investigated through the density functional theory (DFT) method together with periodic slab models. Effect of different surface structures on adsorption, reaction and catalytic activity has been explored. CO at different adsorption sites participated in the oxidative coupling reaction according to the surface structure. CO at bridge or hollow site was consumed for the coupling reaction on the Pd(100) surface, and the favorable route was COOCH3-COOCH3 coupling path. While CO-COOCH3 coupling route was the optimal on Pd(110) and (211) surfaces, CO at top and bridge site took part in the reaction, respectively. Pd(100) surface exhibited higher catalytic activity and selectivity to DMO than Pd(110) and (211) surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.