Abstract

Natural coal (N.C) was sulfonated with sulfuric acid by normal stirring (MS.C) and sonication waves (SS.C) to obtain −SO3H functionalized coal as enhanced adsorbents of malachite green dye (MG). The sulfonated products exhibit enhanced surface area (MS.C (27.2 m2/g) and SS.C (45.8 m2/g)) as compared to N.C. SS.C achieved higher acid density (14.2 mmol/g) and sulfur content (13.2 wt. %) as compared to MS.C. The impact of the sulfonation processes on the adsorption of MG was assessed based on the monolayer isotherm model of one energy. The MG Qsat of N.C (121.3 mg/g), MS.C (226.3 mg/g), and SS.C (296.4 mg/g) validate the significant effect of the sulfonation processes by the sonication waves. This is in agreement with the active site densities that reflect the saturation of SS.C by more active sites (180.74 mg/g) than MS.C (120.38 mg/g) and N.C (70.84 mg/g). The MS.C and SS.C can adsorb three MG molecules as compared to two molecules per site of N.C. The Gaussian energy (<8 kJ/mol) and adsorption energy (<40 kJ/mol)) reflects the physisorption of MG involving van der Waals forces, hydrogen bonding, and dipole bonding forces. The thermodynamic functions demonstrate the uptake of MG by exothermic, spontaneous, feasible reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.