Abstract

In this work, the cellulose-enriched mesocarp of tangerine peels (TP) and the lignin-enriched epicarp of the peels (e-TPs) were used as examples to unveil the link between the basic components (cellulose, hemicellulose and lignin) in lignocellulosic biomass and catalytic activity of biochar towards peroxymonosulfate (PMS) activation. The TP biochar exhibits sheet-like morphology and high porosity, while the e-TPs biochar shows a bulk morphology. Accordingly, the former outperformed the latter in terms of catalytic degradation of phenol with PMS, attributing to the higher content of cellulose than lignin in the TP precursor, which was further supported by comparing the catalytic activity of biochar prepared from binary mixtures containing different proportions of cellulose and lignin. Nonradical oxidation pathway based on singlet oxygen (1O2) and electron-transfer mechanism was involved in the TP biochar/PMS system and the key role of CO group in biochar for 1O2 generation was computationally demonstrated. Additionally, the unique porous structure and surface chemistry of TP biochar endows it an excellent adsorbent for various organic pollutants. Herein, this work provides an insight into the effect of lignocellulosic biomass source on the catalytic property of biochar, which would be beneficial to screen lignocellulosic biowastes to prepare high-performance biochar for water remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call