Abstract

In this study, the binding of Bovine serum albumin (BSA) with three flavonoids, kaempferol-3-O-a-L-rhamnopyranosyl-(1-3)-a-L-rhamnopyranosyl-(1-6)-b-D-galacto- pyranoside (drug 1),kaempfol-7-O-rhamnosyl-3-O-rutinoside (drug 2)andkaempferide-7-O-(4"-O-acetylrhamnosyl)-3-O-ruti- noside (drug 3) is investigated by molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation. The free energies are consistent with available experimental results and suggest that the binding site of BSA-drug1 is more stable than those of BSA-drug2 and BSA-drug3. The energy decomposition analysis is performed and reveals that the electrostatic interactions play an important role in the stabilization of the binding site of BSA-drug1 while the van der Waals interactions contribute largely to stabilization of the binding site of BSA-drug2 and BSA-drug3. The key residues stabilizing the binding sites of BSA-drug1, BSA-drug2 and BSA-drug3 are identified based on the residue decomposition analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call