Abstract

Graphene oxide (GO) channels exhibit unique mass transport behaviors due to their flexibility, controllable thinness and extraordinary physicochemical properties, enabling them to be widely used for adsorption and membrane separation. Nevertheless, the adsorption behavior of nanosized contaminants within the channels of GO membrane has not been fully discussed. In this study, we fabricated a GO membrane (PGn, where n represents the deposition cycles of GO) with multi channels via the cross-linking of GO and multibranched poly(ethyleneimine) (PEI). Phenol was used as molecular probe to determine the correlations between dynamic adsorption behavior and structural parameters of the multilevel GO/PEI membrane. PG8 shows higher adsorption capacities and affinity, which is predominantly attributed to the multichannel structure providing a large specific surface for phenol adsorption, enhancing the accessibility of active sites for phenol molecules and the transport of phenol. Density functional theory calculations demonstrate that the adsorption mechanism of phenol within GO channel is energetically oriented by hydrogen bonds, which is dominated by oxygen-containing groups compared to amino groups. Particularly, the interfaces which facilitate strong π-π interaction and hydrogen bonds maybe the most active regions. Moreover, the as-prepared PG8 membrane showed outstanding performance for other contaminants such as methyl orange and Cr(VI). It is anticipated that this study will have implications for design of GO-related environmental materials with enhanced efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.