Abstract

Abstract Recently, Improvised explosive devices (IEDs) have evolved into a major and significant threat inflicting substantial human casualties and property damage. The majority of injuries are to the lower extremities since they are in close contact to vehicle floor. Floor mats have been developed to mitigate the effects of IEDs blasts. This paper reports a computational study on the energy absorbing behavior of a novel commercial floor mat — Skydex — for foot protection. The design of experiments (DOE) approach was applied to investigate the effect of shape variations on the dynamic performance of a finite element model of Skydex. The FE model was verified using experimental tests on samples produced using 3D printing technique. The DOE approach revealed significant insight into the design of Skydex. It confirmed that shape variables have strong effect on the amount of energy absorbed and the transmitted load. DOE specifically identified the radius of the mid-section of Skydex as the most influential factor in controlling the mode of deformation under compression. In addition, it uncovered the interaction effect between the radius of curvatures of the two hemispheres and upper and lower radii. Finally, DOE revealed the bi-trade-off relations between energy absorbed, transmitted load and mass. These were shown in meaningful and helpful plots which will help the development of Skydex design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call