Abstract

In this paper, the dynamic behavior of calcium carboxylate release during Zhundong coal pyrolysis and combustion is studied via reactive molecular dynamics (ReaxFF MD) simulation. The molecular structure model of Zhundong coal is constructed based on the combination of the classic Hatcher coal model and experimental characterizations. Pyrolysis simulations on the coal model are performed at different temperatures ranging from 2000 K to 2800 K. The pyrolysis experiments are also carried out to validate the ReaxFF simulation. The results show that most of the calcium are released into the volatiles by the thermal decomposition of CM-Ca (coal/char matrix with calcium bonded) after releasing CO2. The distributions of the calcium bonded to gas, tar and inorganics as well as the atomic calcium in the volatiles are quantitatively classified. The thermal cracking of tar fragments are significant at high temperatures leading to the conversion of calcium from tar into the organic gas. Furthermore, the nascent char model is constructed to study the release behavior of calcium in char combustion stage. The calcium is initially released in the form of oxidized calcium and atomic calcium. With increasing temperature, the oxidized calcium trends to convert to the organically bonded calcium. By using the Arrhenius expression, the kinetic parameters for the release of calcium into various species during pyrolysis and char combustion stages are quantitatively determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.