Abstract

The interaction between two novel water-soluble palladium(II) complexes (Pd(bpy)(pyr-dtc)]NO3, complex I and ([Pd(phen)(pyr-dtc)]NO3, complex II, where bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and pyr-dtc = pyrrolidinedithiocarbame) and human serum albumin (HSA) was investigated by fluorescence quenching spectroscopy, synchronous, fluorescence resonance energy transfer (FRET) and three-dimensional fluorescence combined with UV–Vis absorption spectroscopy and circular dichroism technique under simulative physiological conditions. Fluorescence analysis demonstrated that the quenching mechanism of HSA by Pd(II) complexes was static fluorescence quenching and hydrogen bonds and van der Waals interactions were the main intermolecular force based on thermodynamic data. The HSA–Pd(II) complex interaction had a high affinity of 105 M−1, and the number of binding sites n is almost 1. The results of synchronous fluorescence, three-dimensional fluorescence spectra, UV–Vis absorption and CD spectroscopy indicated that these two complexes may induce the microenvironment around the tryptophan residues and the conformation of human serum albumin. The binding distance (r) in the interaction between Pd(II) complex and HSA was estimated by the efficiency of fluorescence resonance energy transfer (FRET). Furthermore, results from multiple spectroscopic studies are consistent and indicate that the antitumor Pd(II) complexes can efficiently bind with human serum albumin molecules, providing a reasonable model that can help in understanding the design, transportation and toxic effects of anticancer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call