Abstract

A composite photocatalyst, AgBr-BaMoO4 was fabricated by two step method; microwave hydrothermal and precipitation-deposition. The as prepared photocatalyst samples were characterized by various techniques. The facet coupling was seen between the (204) plane of BaMoO4 and (200)/(222) planes of AgBr on the basis of XRD/HRTEM analysis. The pharmaceutical pollutant, sulfamethoxazole was adopted to investigate the photocatalytic performances of samples under UV–vis irradiation. The AgBr-BaMoO4 composite degraded the aqueous sulfamethoxazole drug in UV–vis light about 64% within 75 min, which was attributed to efficient separation of photogenerated electron–hole pairs across the interface between Ag/AgBr and BaMoO4. The multi-electron induced oxygen reduced reaction (ORR) was observed. The radical trapping experiment indicates that OH• has major role for sulfamethoxazole degradation. The four successive photodegradation of sulfamethoxazole in UV–vis light indicates the stability of composite photocatalyst. Furthermore, the three different degradation pathways were designed on the basis of retention time and molecular masses of 18 degraded organic fragments that was confirmed by high-performance liquid chromatography photodiode array (HPLC-PDA) and high resolution-quadruple time of flight electrospray ionization mass spectroscopy (HR-QTOF ESI/MS) techniques. The total organic carbon (TOC) analysis suggested the mineralization of SMZ by composite photocatalyst. This study not only demonstrates the enhancement of photocatalytic performance of wide band gap semiconductor by making composite with narrow band gap semiconductor but also detail degradation pathways and mechanisms of sulfamethoxazole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.