Abstract

Density functional theory BLYP/DNP and hyperhomodesmotic equations were employed to calculate ring strain energy, the bond dissociation energy of X-NO(2) (X=C, N) and the charges on the nitro groups of several four-membered and six-membered heterocycle compounds. BLYP/DNP and LST/QST + CG method were also applied to calculate bond rotational energy of X-NO(2) (X=C, N) of above mentioned compounds. It indicated that ring strain energy of four-membered heterocycle nitro compounds is apparently higher than that of six-membered heterocycle nitro compounds. Predictably, ring-opening reactions may preferentially occur for those compounds containing higher ring strain energy under shock. In addition, C-NO(2) bonds in these compounds may rotate easier than N-NO(2) bonds in response to the external shock. As for N-NO(2) bonds in these compounds, they also respond to the external shock by the rotation of N-NO(2) bonds, once to the saddle point of the rotational energy barrier, the whole molecule will become relaxed, N-NO(2) bond becomes weaker and eventually leads to the breakage. When one -C=O, -C=NH or -NH(2) group is introduced to the six-membered heterocycle, the charges on the nitro groups of the new compound decrease drastically, and ring strains increase remarkably. It can be predicted that the new compounds will be more sensitive to shock, and the viewpoint is confirmed by the experimental results of shock sensitivity (small scale gap test) of several explosives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.