Abstract

Cr-based catalysts have drawn attention as promising room-temperature NO oxidation catalysts. However, the intrinsic active component and reaction mechanism at the atomic level remain unclear. Here, taking the Cr2O3, one of the most stable chromium oxides, as an object, we systematically investigated NO oxidation processes on Cr2O3(001) and -(012) surfaces by virtue of DFT+U calculations, aiming to uncover the activity-limiting factors and basic structure–activity relationship of the Cr2O3 catalyst. It was revealed that NO oxidation could not proceed via a Mars–van Krevelen mechanism involving the lattice oxygen on both surfaces. For the Cr2O3(001) surface exposing the isolated three-coordinated Cr3c, the reactions are inclined to occur through the Eley–Rideal route, in which the NO couples directly with the molecular O2* or atomic O* adsorbed at the Cr3c site to form two key intermediate species (ONOO* and NO2*) following a barrierless process. Nevertheless, the overall activity is limited by the irrever...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call