Abstract

Recent developments in chemical processes to prepare single-crystalline nanowire (NW) superlattices (SLs) have discovered a range of unique nanophotonic properties. In particular, diameter-modulated silicon NW geometric SLs (GSLs) have shown their ability to produce complex interference effects through which enhanced light manipulation is achieved. Here, we re-imagine the origin of the complex interference effects occurring in shallow-modulated GSLs and present a refractive index modulation as a key deciding factor. We introduce the design of a NW refractive index SL (ISL), a hypothetical uniform-diameter NW in which the refractive index is periodically modulated, and explain the coupling effect between Mie resonance and bound guided state. We apply the ISL concept to other NW SL systems and suggest potential routes to bring substantial enhancements in lasing activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call