Abstract

A facile, efficient, precise and reliable method based on liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established to separate and determine two typical quinolone antibiotics (ofloxacin and lomefloxacin) and two typical sulfonamide antibiotics (sulfadimeisoxazole and sulfadimidine). The photocatalytic degradation effects, identification of intermediate products and decomposition pathways of these four antibiotics degraded by Bi2MoO6/Bi2WO6/MWCNTs composite catalyst were analyzed using the developed HPLC-MS/MS method. It was found that all four antibiotics can be synchronously decomposed with the ultrahigh removal rates of above 95 %. Three main degradation reactions of quinolones were detected: the decarboxylation of quinolones, the ring opening reaction of piperazine and the defluorination of C–F. The main decomposition reactions of sulfonamides included the sulfonamide bond (SN) breaking at the active sites, the oxidation of the amino acids on the benzene rings, and the substitution and oxidation ring opening reaction of pyrimidine. This study not only developed a detailed isolation and identification method for the degradation pathways and mechanisms of mixed pharmaceutical pollutants, but also provides a superb photocatalyst for the removal of multiplex pharmaceutical pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.