Abstract

Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria–host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria’s adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.

Highlights

  • The Lactobacillus genus belongs to the LAB group, which currently comprises of 222 species described in List of Prokaryotic Names with Standing in Nomenclature “LPSN”1 (February 2017)

  • To highlight the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), we focused the in silico analysis on carbohydrate metabolism related to prebiotic utilization and the proteins involved in host interactions, since the adaptation of probiotics is mainly represented by the enrichment of mucus-binding proteins and enzymes involved in breakdown of complex carbohydrates (Ventura et al, 2012)

  • In silico analysis has some limitations related with the prediction accuracy which in turn depends on the algorithm used and the phenotype data from experiments (Ng and Henikoff, 2006); to avoid incorrect predictions all the annotations made in the present study were curated manually

Read more

Summary

INTRODUCTION

The Lactobacillus genus belongs to the LAB group, which currently comprises of 222 species described in List of Prokaryotic Names with Standing in Nomenclature “LPSN”1 (February 2017). In this context, Lactobacillus represents a highly heterogeneous taxonomic group encompassing species with various physiological, biochemical and genetic characteristics that reflect their capacity to colonize many ecological niches and to respond to several environmental stresses (De Angelis and Gobbetti, 2004; Pot et al, 2014). We carried out in silico analysis of L. pentosus MP-10’s carbohydrate metabolism and the factors that affect their interaction with the host with the aim to identify genes as potential probiotic markers

RESULTS AND DISCUSSION
CONCLUSION
MATERIALS AND METHODS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call