Abstract

New insights into the negative/positive bias temperature instability (N/PBTI) degradation mechanisms in the sub-1-nm equivalent oxide thickness (EOT) regime are presented in this paper. The electric field requirements suggested by the International Roadmap for Semiconductors demand an even higher value in the sub-1-nm-EOT regime, which is practically difficult to meet with the increased hole trapping mechanism involved. Thus, a fixed electric field target of 5 MV/cm is considered as well here, which might be a reasonable target to achieve. The sub-1-nm-EOT devices in this paper are obtained by adopting a thinner TiN metal gate inducing Si in-diffusion and reducing the interfacial oxide layer thickness. NBTI degradation follows an isoelectric field model in over an EOT of 1 nm due to the degradation mechanism of Si/SiO_2 interface state generation combined with a hole trapping mechanism. However, in the sub-1-nm-EOT regime, the probability of hole trapping into the gate dielectric increases, and it is strongly dependent on the thickness of the interfacial oxide layer. Several experimental proofs of this increased bulk defect effect are shown in this paper. In addition, the bulk defect affecting NBTI is shown to be mostly a preexisting defect, although the permanently generated defects are relatively higher in sub-1-nm-EOT devices. Therefore, NBTI in the sub-1-nm-EOT regime faces the lifetime limit by both electric field dependence and increased degradation by increased hole trapping into bulk defects. Further, we found a minimum interfacial layer thickness of 0.4 nm that is required to prevent the accelerated NBTI degradation by increased direct tunneling. The main degradation mechanism of PBTI in sub-1-nm EOT is the electron trapping into bulk defects, which is the same as in over 1-nm-EOT devices. This enables us to modulate the bulk defect energetic locations in the oxide and to improve PBTI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call