Abstract
Seismic activity linked to the 2002–03 Mt. Etna eruption was investigated by analyzing the Md > 2.3 earthquakes. The results of 3D relocation were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The analysis revealed a complex kinematic response of the eastern flank dominated by fast stress propagation and reorientation. We hypothesize that a vertical dike intruded the southern flank, generating an extensional regime that triggered a radial intrusion in the northeast sector of the volcano. The combined effects gave rise to a rotation of the stress tensor that controlled the activation of the Pernicana fault system. The volcanic and tectonic interactions produced a second reorientation of the stress tensor, causing a structural response in the southeast lower flank. The overall result of the deformation processes observed during the eruption was an E‐W extension on the eastern flank of the volcano.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.