Abstract
Solid-state electrolytes (SSEs) have attracted considerable attention as an alternative for liquid electrolytes to improve safety and durability. Sodium Super Ionic CONductor (NASICON)-type SSEs, typically Na3Zr2Si2PO12, have shown great promise because of their high ionic conductivity and low thermal expansivity. Doping La into the NASICON structure can further elevate the ionic conductivity by an order of magnitude to several mS/cm. However, the underlying mechanism of ionic transportation enhancement has not yet been fully disclosed. Herein, we fabricate a series of Na3+xLaxZr2-xSi2PO12 (0 ≤ x ≤ 0.5) SSEs. The electronic and local structures of constituent elements are studied via synchrotron-based X-ray absorption spectroscopy, and the ionic dynamics and Na-ion conduction mechanism are investigated by solid-state nuclear magnetic resonance spectroscopy. The results prove that La3+ ions exist in the form of phosphate impurities such as Na3La(PO4)2 instead of occupying the Zr4+ site. As a result, the increased Si/P ratio in the NASICON phase, accompanied by an increase in the sodium ion occupancy, makes a major contribution to the enhancement of ionic conductivity. The spin-lattice relaxation time study confirms the accelerated Na+ motions in the altered NASICON phase. Modifications on the Si/P composition can be a promising strategy to enhance the ionic conductivity of NASICON.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.