Abstract

Microplastics (MPs), as newly emerging pollutants, may interact with dissolved organic matter (DOM) widely present in the environment after entering the environment, thereby influencing the migration and transformation of MPs. The interaction characteristics and mechanism between DOM and MPs are restricted by many factors, and the current mechanism remains unclear. Thus, we explored the combination of MP with different types and compositions of DOM (fulvic acid (FA) and humic acid (HA)). Adsorption experiments revealed that MP has high adsorption affinity for all four DOMs, particularly FA. Meanwhile, the affinity of MP-DOM was also examined using excitation–emission matrix (EEM) analyses and fluorescence quenching method (excitation emission matrix-parallel factor analysis (EEM-PARAFAC)). Aromatic substances and hydrophobic substances dominate all DOM samples. For all DOM types tested, the quenching curve varies considerably with the type and compositions of DOM. In addition, three fluorescent components exhibited significant fluorescence quenching over time. The interaction mechanism of MPs and DOM at the molecular level was further elucidated by utilizing two-dimensional (2D) Fourier transformation infrared (FTIR) correlation spectroscopy (COS) analysis, which revealed that the oxygen-containing functional group in MPs was the most preferred DOM binding structure. This work was facilitated to explore the environmental behavior of MPs and formation of secondary MPs under natural conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.