Abstract

With electronic device miniaturization and integration, its thermal management is encountering challenges of high heat flux and eliminating thermal stress. Phase change thermal control is paid more attention to due to its high energy density and temperature uniformity. Therefore, a visual experimental platform was established to investigate the heat transfer and phase change characteristics of graphene aerogel composite phase change materials in this study. The results indicate that the heat dissipation enhancement of those composite materials can reach 220.8%, while graphene aerogel has the opposite effects of heat conduction enhancement and convection suppression. Furthermore, two new cascade arrangements are proposed and the effects of cascade arrangements on heat transfer performance are discussed. The improvement effect is best when the thermal conductivity increases longitude from top to bottom, whose heat dissipation efficiency is 207.5%, which is 11% higher than that of the group without cascade configurations. The horizontal cascade arrangement proposed in this study achieves an effective combination of heat conduction enhancement and convection heat transfer. Its heat dissipation is 12% more effective than the cavity filled with pure CPMCs using the same amount of porous materials, and the phase change speed is increased by 149 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call