Abstract

A novel, economical and magnetically separable heterojunction photocatalyst Fe3O4/BiOBr stacked on reed straw biochar (Fe3O4/BiOBr/BC) with visible light response was successfully prepared via a facile modified one-step hydrolysis method for the first time. The target pollutant carbamazepine (CBZ) was used to further investigate the photocatalytic activity of Fe3O4/BiOBr/BC. Compared with BiOBr and Fe3O4/BiOBr, novel photocatalyst Fe3O4/BiOBr/BC owing to the introduction of biochar exhibited better photocatalytic activity (95.51%) of CBZ photodegradation even under 50 W energy-saving visible LED light irradiation. Additionally, effect of pH on CBZ photodegradation using Fe3O4/BiOBr/BC was insignificant meaning wider practical application. Besides, three common anions (Cl−, NO3−, SO42−) and DOM existing in natural water exhibited beneficial or detrimental effects to some extent. Free radicals trapping experiments results illustrated high carbamazepine removal efficiency could be ascribed to superoxide radicals and hydroxyl radicals. The transformation intermediates of CBZ were determined by HRMS and the possible photodegradation pathways were proposed. Finally, good reusability and stability verified the excellent practicality and feasibility of Fe3O4/BiOBr/BC for removal of organic pollutants in aqueous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.