Abstract

An oxygen vacancy defect in monoclinic VO2 has been shown to modulate the metal-insulator transition (MIT) at room temperature. However, as the electronic and structural reorganizations occur simultaneously, the origin of MIT is still unclear. Here we performed first-principles calculations to examine electronic variations separately from structural reorganizations during MIT. It was found that the oxygen defect induces electronic reorganization by creating polarized 3d orbitial electrons, while structure reorganization makes the conduction band edge states available for occupation. The conduction band states thus hold polarized charges that delocalize over space, bestowing metallic property on the originally insulated VO2. A linear relationship for the number of polarized electrons and the defect concentration is revealed, which would lead to cost-effective control of VO2 MIT behavior by defect engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call