Abstract

Simple SummaryThe present study envisaged the codon usage pattern analysis of tumor suppressor gene EPB41L3 for the human, brown rat, domesticated cattle, and Sumatran orangutan. Most amino acids are coded by more than one synonymous codon, but they are used in a biased manner. The codon usage bias results from multiple factors like compositional properties, dinucleotide abundance, neutrality, parity, tRNA pool, etc. Understanding codon bias is central to fields as diverse as molecular evolution, gene expressivity, protein translation, and protein folding. This kind of studies is important to see the effects of various evolutionary forces on codon usage. The present study indicated that the selection force is dominant over other forces shaping codon usage in the envisaged organisms.Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.

Highlights

  • Tumor suppressor genes (TSGs) are the genes that keep the check on the genes that are responsible for cell cycle progression

  • We investigated the compositional properties and biases in the codon utilization trends of the gene were envisaged as the quantity of protein expressed from the coding sequences may vary remarkably due to distinguishable translational properties of different synonymous codons under evolutionary forces

  • P2 value (>0.5) indicated high translational efficiency of the EPB41L3 gene that implies the presence of optimal codons, inferring that methylation has probably no effect on gene expression

Read more

Summary

Introduction

Tumor suppressor genes (TSGs) are the genes that keep the check on the genes that are responsible for cell cycle progression. These genes further couple the DNA damage to the cell cycle, so that until DNA damage is repaired, the cell does not enter the cell division process. If the damage is irreparable, these genes function in the direction of apoptosis. Inactivation of these genes removes/downregulates negative cues (inhibitory factors) of cell proliferation and contributes to unusual cell growth and division that leads to tumor development. Inactivated Rb is involved in carcinomas of the bladder, breast, and lung.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call