Abstract

Chemical etching of graphene over catalytic metal surface holds great potential in nanosizing the graphene microstructure and thus modulating its properties. Herein, it has been demonstrated that gaseous CO2 can efficiently etch the monolayer graphene film grown by chemical vapor deposition catalyzed with the surface of Cu foil. During the etching process, the CO2 etching rate is monotonously dependent on the CO2 flowrate and the etching temperature, and is faster than the H2 etching which has been usually employed for the graphene patterning. Moreover, the resultant graphene flakes by the CO2 etching remain the originally high crystallinity and are free of being oxidized. Also, a 120° angle between the neighboring edges and hexagonal morphology of graphene flakes can be realized for the potential shape regulation of nanostructured graphene, which is similar as the anisotropic etching of H2. These results illustrate that the CO2 etching over the metal surface can provide a promising strategy for the precisely fabrication of nanostructured graphene materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.