Abstract

Thermal ablation plays an important role in the aerospace field. In this paper, to study the chemical kinetics effects on heat transfer and surface ablation of the charring ablative material during aerodynamic heating, a charring ablation model was established using the finite element method. The AVCOAT 5026-39H/CG material, one typical thermal protection material used in thermal protection system, was employed as the ablative material and heated by aerodynamic heating condition experienced by Apollo 4. The finite element model considers the decomposition of the resin within the charring material and the removal of the surface material, and uses Darcy?s law to simulate the fluid-flow in the porous char. Results showed that the model can be used for the ablation analysis of charring materials. Then effects of chemical kinetics on ablation were discussed in terms of four aspects, including temperature, surface recession, density distribution, and mass flux of pyrolysis gas. The pre-exponential factor and activation energy have different effects on ablation, while the effect of the reaction order is little. This paper is helpful to understand the heating and ablation process of charring ablative materials and to provide technical references for the selection and design of thermal protection materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.