Abstract

Seagrass meadows constitute a prestigious ecosystem in the marine environment, providing valuable ecological and commercial services. Among the various causes, pollutions are considered one of the significant reasons for seagrass decline globally. This study investigates the impacts of polycyclic aromatic hydrocarbons mixture (pyrene, phenanthrene, and fluorene) on bacterial communities in Halophila ovalis sediments. The seagrass sediment bacterial microbiome was evaluated in a batch culture experiment by Illumina MiSeq sequencing. Culture-able bacterial strains were isolated and characterized by 16S rRNA gene sequencing. The results demonstrated an excellent alpha diversity in the original sediments with a Shannon index of (8.078) compared to the subsequent control group (5.908) and PAH-treated group (PAH-T) (4.916). Three phyla, Proteobacteria, Firmicutes, and Bacteroidetes, were detected in high abundance in the control and PAH-T groups. However, a significant difference (P < 0.05) was observed at the genus level between control and PAH-T group bacterial consortia. Pseudomonas, Mycobacterium, Idiomarina, Hydrogenophaga, Alteromonas, Sphingobacterium, and several others were highly abundant in PAH-T groups. Most of the culture-able isolates recovered in this study showed the closest resemblance to previously identified hydrocarbon-degrading bacteria. Among the three strains, Mix-16 (Citricoccus yambaruensis) and Mix-20 (Gordonia rubripertincta) showed a higher degradation of PAHs than Mix-19 (Isoptericola halotolerans) in the monoculture experiment. The most increased degradation of PAHs was recorded in the co-culture experiment. The present work revealed that PAHs could act as environmental stress and can influence bacterial community succession. Moreover, the co-culture strategy significantly enhanced the biodegradation of PAHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call