Abstract

Suitable conformations for peptide nucleic acid (PNA) self-hybrids with (2′R,4′R)- and (2′R,4′S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones (namely, acpcPNA and epi-acpcPNA, respectively) were investigated based on molecular dynamics simulations. The results revealed that hybridization of the acpcPNA was observed only in the parallel direction, with a conformation close to the P-type structure. In contrast, self-hybrids of the epi-acpcPNA were formed in the antiparallel and parallel directions; the antiparallel duplex adopted the B-form conformation, and the parallel duplex was between B- and P-forms. The calculated binding energies and the experimental data indicate that the antiparallel epi-acpcPNA self-hybrid was more stable than the parallel duplex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.