Abstract

Calculation of chromophore polar order, i.e. the polarization of nonlinear optically (NLO) active polymers poled by external field, is challenging. One possible solution is to reproduce the orientation polarization of chromophores under external field using Langevin dynamics (LD) molecular modeling. The present work investigates the influence of chromophore dipole moment, density and field extent on NLO efficiency and polarization/relaxation dynamics. Results of simulations convince us, that the method is applicable for modeling real NLO polymers. In the spotlight of this investigation we would like to describe a NLO polymer as a “ferrofluid” where chromophores are active particles or electrets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call