Abstract
Insider threat detection has attracted a considerable attention from the researchers and industries. Existing work mainly focused on applying machine-learning techniques to detecting insider threat. However, this work requires “feature engineering” which is difficult and time-consuming. As we know, the deep learning technique can automatically learn powerful features. In this paper, we present a novel insider threat detection method with Deep Neural Network (DNN) based on user behavior. Specifically, we use the LSTM-CNN framework to find user’s anomalous behavior. First, similar to natural language modeling, we use the Long Short Term Memory (LSTM) to learn the language of user behavior through user actions and extract abstracted temporal features. Second, the extracted features are converted to the fixed-size feature matrices and the Convolutional Neural Network (CNN) use these fixed-size feature matrices to detect insider threat. We conduct experiments on a public dataset of insider threats. Experimental results show that our method can successfully detect insider threat and we obtained AUC = 0.9449 in best case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.